3.1.22 \(\int \frac {(c+d x^3)^3}{(a+b x^3)^2} \, dx\) [22]

3.1.22.1 Optimal result
3.1.22.2 Mathematica [A] (verified)
3.1.22.3 Rubi [A] (verified)
3.1.22.4 Maple [C] (verified)
3.1.22.5 Fricas [B] (verification not implemented)
3.1.22.6 Sympy [A] (verification not implemented)
3.1.22.7 Maxima [A] (verification not implemented)
3.1.22.8 Giac [A] (verification not implemented)
3.1.22.9 Mupad [B] (verification not implemented)

3.1.22.1 Optimal result

Integrand size = 19, antiderivative size = 234 \[ \int \frac {\left (c+d x^3\right )^3}{\left (a+b x^3\right )^2} \, dx=\frac {d^2 (3 b c-2 a d) x}{b^3}+\frac {d^3 x^4}{4 b^2}+\frac {(b c-a d)^3 x}{3 a b^3 \left (a+b x^3\right )}-\frac {(b c-a d)^2 (2 b c+7 a d) \arctan \left (\frac {\sqrt [3]{a}-2 \sqrt [3]{b} x}{\sqrt {3} \sqrt [3]{a}}\right )}{3 \sqrt {3} a^{5/3} b^{10/3}}+\frac {(b c-a d)^2 (2 b c+7 a d) \log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{9 a^{5/3} b^{10/3}}-\frac {(b c-a d)^2 (2 b c+7 a d) \log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2\right )}{18 a^{5/3} b^{10/3}} \]

output
d^2*(-2*a*d+3*b*c)*x/b^3+1/4*d^3*x^4/b^2+1/3*(-a*d+b*c)^3*x/a/b^3/(b*x^3+a 
)+1/9*(-a*d+b*c)^2*(7*a*d+2*b*c)*ln(a^(1/3)+b^(1/3)*x)/a^(5/3)/b^(10/3)-1/ 
18*(-a*d+b*c)^2*(7*a*d+2*b*c)*ln(a^(2/3)-a^(1/3)*b^(1/3)*x+b^(2/3)*x^2)/a^ 
(5/3)/b^(10/3)-1/9*(-a*d+b*c)^2*(7*a*d+2*b*c)*arctan(1/3*(a^(1/3)-2*b^(1/3 
)*x)/a^(1/3)*3^(1/2))/a^(5/3)/b^(10/3)*3^(1/2)
 
3.1.22.2 Mathematica [A] (verified)

Time = 0.16 (sec) , antiderivative size = 227, normalized size of antiderivative = 0.97 \[ \int \frac {\left (c+d x^3\right )^3}{\left (a+b x^3\right )^2} \, dx=\frac {36 \sqrt [3]{b} d^2 (3 b c-2 a d) x+9 b^{4/3} d^3 x^4+\frac {12 \sqrt [3]{b} (b c-a d)^3 x}{a \left (a+b x^3\right )}+\frac {4 \sqrt {3} (b c-a d)^2 (2 b c+7 a d) \arctan \left (\frac {-\sqrt [3]{a}+2 \sqrt [3]{b} x}{\sqrt {3} \sqrt [3]{a}}\right )}{a^{5/3}}+\frac {4 (b c-a d)^2 (2 b c+7 a d) \log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{a^{5/3}}-\frac {2 (b c-a d)^2 (2 b c+7 a d) \log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2\right )}{a^{5/3}}}{36 b^{10/3}} \]

input
Integrate[(c + d*x^3)^3/(a + b*x^3)^2,x]
 
output
(36*b^(1/3)*d^2*(3*b*c - 2*a*d)*x + 9*b^(4/3)*d^3*x^4 + (12*b^(1/3)*(b*c - 
 a*d)^3*x)/(a*(a + b*x^3)) + (4*Sqrt[3]*(b*c - a*d)^2*(2*b*c + 7*a*d)*ArcT 
an[(-a^(1/3) + 2*b^(1/3)*x)/(Sqrt[3]*a^(1/3))])/a^(5/3) + (4*(b*c - a*d)^2 
*(2*b*c + 7*a*d)*Log[a^(1/3) + b^(1/3)*x])/a^(5/3) - (2*(b*c - a*d)^2*(2*b 
*c + 7*a*d)*Log[a^(2/3) - a^(1/3)*b^(1/3)*x + b^(2/3)*x^2])/a^(5/3))/(36*b 
^(10/3))
 
3.1.22.3 Rubi [A] (verified)

Time = 0.42 (sec) , antiderivative size = 234, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.105, Rules used = {915, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (c+d x^3\right )^3}{\left (a+b x^3\right )^2} \, dx\)

\(\Big \downarrow \) 915

\(\displaystyle \int \left (\frac {d^2 (3 b c-2 a d)}{b^3}+\frac {3 b d x^3 (b c-a d)^2+(b c-a d)^2 (2 a d+b c)}{b^3 \left (a+b x^3\right )^2}+\frac {d^3 x^3}{b^2}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {\arctan \left (\frac {\sqrt [3]{a}-2 \sqrt [3]{b} x}{\sqrt {3} \sqrt [3]{a}}\right ) (b c-a d)^2 (7 a d+2 b c)}{3 \sqrt {3} a^{5/3} b^{10/3}}-\frac {(b c-a d)^2 (7 a d+2 b c) \log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2\right )}{18 a^{5/3} b^{10/3}}+\frac {(b c-a d)^2 (7 a d+2 b c) \log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{9 a^{5/3} b^{10/3}}+\frac {d^2 x (3 b c-2 a d)}{b^3}+\frac {x (b c-a d)^3}{3 a b^3 \left (a+b x^3\right )}+\frac {d^3 x^4}{4 b^2}\)

input
Int[(c + d*x^3)^3/(a + b*x^3)^2,x]
 
output
(d^2*(3*b*c - 2*a*d)*x)/b^3 + (d^3*x^4)/(4*b^2) + ((b*c - a*d)^3*x)/(3*a*b 
^3*(a + b*x^3)) - ((b*c - a*d)^2*(2*b*c + 7*a*d)*ArcTan[(a^(1/3) - 2*b^(1/ 
3)*x)/(Sqrt[3]*a^(1/3))])/(3*Sqrt[3]*a^(5/3)*b^(10/3)) + ((b*c - a*d)^2*(2 
*b*c + 7*a*d)*Log[a^(1/3) + b^(1/3)*x])/(9*a^(5/3)*b^(10/3)) - ((b*c - a*d 
)^2*(2*b*c + 7*a*d)*Log[a^(2/3) - a^(1/3)*b^(1/3)*x + b^(2/3)*x^2])/(18*a^ 
(5/3)*b^(10/3))
 

3.1.22.3.1 Defintions of rubi rules used

rule 915
Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] 
:> Int[PolynomialDivide[(a + b*x^n)^p, (c + d*x^n)^(-q), x], x] /; FreeQ[{a 
, b, c, d}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && IGtQ[p, 0] && ILtQ[q, 
0] && GeQ[p, -q]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 
3.1.22.4 Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 3.90 (sec) , antiderivative size = 153, normalized size of antiderivative = 0.65

method result size
risch \(\frac {d^{3} x^{4}}{4 b^{2}}-\frac {2 d^{3} a x}{b^{3}}+\frac {3 d^{2} c x}{b^{2}}-\frac {\left (a^{3} d^{3}-3 a^{2} b c \,d^{2}+3 a \,b^{2} c^{2} d -b^{3} c^{3}\right ) x}{3 a \,b^{3} \left (b \,x^{3}+a \right )}+\frac {\munderset {\textit {\_R} =\operatorname {RootOf}\left (b \,\textit {\_Z}^{3}+a \right )}{\sum }\frac {\left (7 a^{3} d^{3}-12 a^{2} b c \,d^{2}+3 a \,b^{2} c^{2} d +2 b^{3} c^{3}\right ) \ln \left (x -\textit {\_R} \right )}{\textit {\_R}^{2}}}{9 b^{4} a}\) \(153\)
default \(-\frac {d^{2} \left (-\frac {1}{4} b d \,x^{4}+2 a d x -3 b c x \right )}{b^{3}}+\frac {-\frac {\left (a^{3} d^{3}-3 a^{2} b c \,d^{2}+3 a \,b^{2} c^{2} d -b^{3} c^{3}\right ) x}{3 a \left (b \,x^{3}+a \right )}+\frac {\left (7 a^{3} d^{3}-12 a^{2} b c \,d^{2}+3 a \,b^{2} c^{2} d +2 b^{3} c^{3}\right ) \left (\frac {\ln \left (x +\left (\frac {a}{b}\right )^{\frac {1}{3}}\right )}{3 b \left (\frac {a}{b}\right )^{\frac {2}{3}}}-\frac {\ln \left (x^{2}-\left (\frac {a}{b}\right )^{\frac {1}{3}} x +\left (\frac {a}{b}\right )^{\frac {2}{3}}\right )}{6 b \left (\frac {a}{b}\right )^{\frac {2}{3}}}+\frac {\sqrt {3}\, \arctan \left (\frac {\sqrt {3}\, \left (\frac {2 x}{\left (\frac {a}{b}\right )^{\frac {1}{3}}}-1\right )}{3}\right )}{3 b \left (\frac {a}{b}\right )^{\frac {2}{3}}}\right )}{3 a}}{b^{3}}\) \(216\)

input
int((d*x^3+c)^3/(b*x^3+a)^2,x,method=_RETURNVERBOSE)
 
output
1/4*d^3*x^4/b^2-2*d^3/b^3*a*x+3*d^2/b^2*c*x-1/3*(a^3*d^3-3*a^2*b*c*d^2+3*a 
*b^2*c^2*d-b^3*c^3)/a*x/b^3/(b*x^3+a)+1/9/b^4/a*sum((7*a^3*d^3-12*a^2*b*c* 
d^2+3*a*b^2*c^2*d+2*b^3*c^3)/_R^2*ln(x-_R),_R=RootOf(_Z^3*b+a))
 
3.1.22.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 493 vs. \(2 (193) = 386\).

Time = 0.29 (sec) , antiderivative size = 1027, normalized size of antiderivative = 4.39 \[ \int \frac {\left (c+d x^3\right )^3}{\left (a+b x^3\right )^2} \, dx=\text {Too large to display} \]

input
integrate((d*x^3+c)^3/(b*x^3+a)^2,x, algorithm="fricas")
 
output
[1/36*(9*a^3*b^3*d^3*x^7 + 9*(12*a^3*b^3*c*d^2 - 7*a^4*b^2*d^3)*x^4 + 6*sq 
rt(1/3)*(2*a^2*b^4*c^3 + 3*a^3*b^3*c^2*d - 12*a^4*b^2*c*d^2 + 7*a^5*b*d^3 
+ (2*a*b^5*c^3 + 3*a^2*b^4*c^2*d - 12*a^3*b^3*c*d^2 + 7*a^4*b^2*d^3)*x^3)* 
sqrt(-(a^2*b)^(1/3)/b)*log((2*a*b*x^3 - 3*(a^2*b)^(1/3)*a*x - a^2 + 3*sqrt 
(1/3)*(2*a*b*x^2 + (a^2*b)^(2/3)*x - (a^2*b)^(1/3)*a)*sqrt(-(a^2*b)^(1/3)/ 
b))/(b*x^3 + a)) - 2*(2*a*b^3*c^3 + 3*a^2*b^2*c^2*d - 12*a^3*b*c*d^2 + 7*a 
^4*d^3 + (2*b^4*c^3 + 3*a*b^3*c^2*d - 12*a^2*b^2*c*d^2 + 7*a^3*b*d^3)*x^3) 
*(a^2*b)^(2/3)*log(a*b*x^2 - (a^2*b)^(2/3)*x + (a^2*b)^(1/3)*a) + 4*(2*a*b 
^3*c^3 + 3*a^2*b^2*c^2*d - 12*a^3*b*c*d^2 + 7*a^4*d^3 + (2*b^4*c^3 + 3*a*b 
^3*c^2*d - 12*a^2*b^2*c*d^2 + 7*a^3*b*d^3)*x^3)*(a^2*b)^(2/3)*log(a*b*x + 
(a^2*b)^(2/3)) + 12*(a^2*b^4*c^3 - 3*a^3*b^3*c^2*d + 12*a^4*b^2*c*d^2 - 7* 
a^5*b*d^3)*x)/(a^3*b^5*x^3 + a^4*b^4), 1/36*(9*a^3*b^3*d^3*x^7 + 9*(12*a^3 
*b^3*c*d^2 - 7*a^4*b^2*d^3)*x^4 + 12*sqrt(1/3)*(2*a^2*b^4*c^3 + 3*a^3*b^3* 
c^2*d - 12*a^4*b^2*c*d^2 + 7*a^5*b*d^3 + (2*a*b^5*c^3 + 3*a^2*b^4*c^2*d - 
12*a^3*b^3*c*d^2 + 7*a^4*b^2*d^3)*x^3)*sqrt((a^2*b)^(1/3)/b)*arctan(sqrt(1 
/3)*(2*(a^2*b)^(2/3)*x - (a^2*b)^(1/3)*a)*sqrt((a^2*b)^(1/3)/b)/a^2) - 2*( 
2*a*b^3*c^3 + 3*a^2*b^2*c^2*d - 12*a^3*b*c*d^2 + 7*a^4*d^3 + (2*b^4*c^3 + 
3*a*b^3*c^2*d - 12*a^2*b^2*c*d^2 + 7*a^3*b*d^3)*x^3)*(a^2*b)^(2/3)*log(a*b 
*x^2 - (a^2*b)^(2/3)*x + (a^2*b)^(1/3)*a) + 4*(2*a*b^3*c^3 + 3*a^2*b^2*c^2 
*d - 12*a^3*b*c*d^2 + 7*a^4*d^3 + (2*b^4*c^3 + 3*a*b^3*c^2*d - 12*a^2*b...
 
3.1.22.6 Sympy [A] (verification not implemented)

Time = 1.31 (sec) , antiderivative size = 291, normalized size of antiderivative = 1.24 \[ \int \frac {\left (c+d x^3\right )^3}{\left (a+b x^3\right )^2} \, dx=x \left (- \frac {2 a d^{3}}{b^{3}} + \frac {3 c d^{2}}{b^{2}}\right ) + \frac {x \left (- a^{3} d^{3} + 3 a^{2} b c d^{2} - 3 a b^{2} c^{2} d + b^{3} c^{3}\right )}{3 a^{2} b^{3} + 3 a b^{4} x^{3}} + \operatorname {RootSum} {\left (729 t^{3} a^{5} b^{10} - 343 a^{9} d^{9} + 1764 a^{8} b c d^{8} - 3465 a^{7} b^{2} c^{2} d^{7} + 2946 a^{6} b^{3} c^{3} d^{6} - 477 a^{5} b^{4} c^{4} d^{5} - 792 a^{4} b^{5} c^{5} d^{4} + 321 a^{3} b^{6} c^{6} d^{3} + 90 a^{2} b^{7} c^{7} d^{2} - 36 a b^{8} c^{8} d - 8 b^{9} c^{9}, \left ( t \mapsto t \log {\left (\frac {9 t a^{2} b^{3}}{7 a^{3} d^{3} - 12 a^{2} b c d^{2} + 3 a b^{2} c^{2} d + 2 b^{3} c^{3}} + x \right )} \right )\right )} + \frac {d^{3} x^{4}}{4 b^{2}} \]

input
integrate((d*x**3+c)**3/(b*x**3+a)**2,x)
 
output
x*(-2*a*d**3/b**3 + 3*c*d**2/b**2) + x*(-a**3*d**3 + 3*a**2*b*c*d**2 - 3*a 
*b**2*c**2*d + b**3*c**3)/(3*a**2*b**3 + 3*a*b**4*x**3) + RootSum(729*_t** 
3*a**5*b**10 - 343*a**9*d**9 + 1764*a**8*b*c*d**8 - 3465*a**7*b**2*c**2*d* 
*7 + 2946*a**6*b**3*c**3*d**6 - 477*a**5*b**4*c**4*d**5 - 792*a**4*b**5*c* 
*5*d**4 + 321*a**3*b**6*c**6*d**3 + 90*a**2*b**7*c**7*d**2 - 36*a*b**8*c** 
8*d - 8*b**9*c**9, Lambda(_t, _t*log(9*_t*a**2*b**3/(7*a**3*d**3 - 12*a**2 
*b*c*d**2 + 3*a*b**2*c**2*d + 2*b**3*c**3) + x))) + d**3*x**4/(4*b**2)
 
3.1.22.7 Maxima [A] (verification not implemented)

Time = 0.29 (sec) , antiderivative size = 306, normalized size of antiderivative = 1.31 \[ \int \frac {\left (c+d x^3\right )^3}{\left (a+b x^3\right )^2} \, dx=\frac {{\left (b^{3} c^{3} - 3 \, a b^{2} c^{2} d + 3 \, a^{2} b c d^{2} - a^{3} d^{3}\right )} x}{3 \, {\left (a b^{4} x^{3} + a^{2} b^{3}\right )}} + \frac {b d^{3} x^{4} + 4 \, {\left (3 \, b c d^{2} - 2 \, a d^{3}\right )} x}{4 \, b^{3}} + \frac {\sqrt {3} {\left (2 \, b^{3} c^{3} + 3 \, a b^{2} c^{2} d - 12 \, a^{2} b c d^{2} + 7 \, a^{3} d^{3}\right )} \arctan \left (\frac {\sqrt {3} {\left (2 \, x - \left (\frac {a}{b}\right )^{\frac {1}{3}}\right )}}{3 \, \left (\frac {a}{b}\right )^{\frac {1}{3}}}\right )}{9 \, a b^{4} \left (\frac {a}{b}\right )^{\frac {2}{3}}} - \frac {{\left (2 \, b^{3} c^{3} + 3 \, a b^{2} c^{2} d - 12 \, a^{2} b c d^{2} + 7 \, a^{3} d^{3}\right )} \log \left (x^{2} - x \left (\frac {a}{b}\right )^{\frac {1}{3}} + \left (\frac {a}{b}\right )^{\frac {2}{3}}\right )}{18 \, a b^{4} \left (\frac {a}{b}\right )^{\frac {2}{3}}} + \frac {{\left (2 \, b^{3} c^{3} + 3 \, a b^{2} c^{2} d - 12 \, a^{2} b c d^{2} + 7 \, a^{3} d^{3}\right )} \log \left (x + \left (\frac {a}{b}\right )^{\frac {1}{3}}\right )}{9 \, a b^{4} \left (\frac {a}{b}\right )^{\frac {2}{3}}} \]

input
integrate((d*x^3+c)^3/(b*x^3+a)^2,x, algorithm="maxima")
 
output
1/3*(b^3*c^3 - 3*a*b^2*c^2*d + 3*a^2*b*c*d^2 - a^3*d^3)*x/(a*b^4*x^3 + a^2 
*b^3) + 1/4*(b*d^3*x^4 + 4*(3*b*c*d^2 - 2*a*d^3)*x)/b^3 + 1/9*sqrt(3)*(2*b 
^3*c^3 + 3*a*b^2*c^2*d - 12*a^2*b*c*d^2 + 7*a^3*d^3)*arctan(1/3*sqrt(3)*(2 
*x - (a/b)^(1/3))/(a/b)^(1/3))/(a*b^4*(a/b)^(2/3)) - 1/18*(2*b^3*c^3 + 3*a 
*b^2*c^2*d - 12*a^2*b*c*d^2 + 7*a^3*d^3)*log(x^2 - x*(a/b)^(1/3) + (a/b)^( 
2/3))/(a*b^4*(a/b)^(2/3)) + 1/9*(2*b^3*c^3 + 3*a*b^2*c^2*d - 12*a^2*b*c*d^ 
2 + 7*a^3*d^3)*log(x + (a/b)^(1/3))/(a*b^4*(a/b)^(2/3))
 
3.1.22.8 Giac [A] (verification not implemented)

Time = 0.30 (sec) , antiderivative size = 319, normalized size of antiderivative = 1.36 \[ \int \frac {\left (c+d x^3\right )^3}{\left (a+b x^3\right )^2} \, dx=-\frac {\sqrt {3} {\left (2 \, b^{3} c^{3} + 3 \, a b^{2} c^{2} d - 12 \, a^{2} b c d^{2} + 7 \, a^{3} d^{3}\right )} \arctan \left (\frac {\sqrt {3} {\left (2 \, x + \left (-\frac {a}{b}\right )^{\frac {1}{3}}\right )}}{3 \, \left (-\frac {a}{b}\right )^{\frac {1}{3}}}\right )}{9 \, \left (-a b^{2}\right )^{\frac {2}{3}} a b^{2}} - \frac {{\left (2 \, b^{3} c^{3} + 3 \, a b^{2} c^{2} d - 12 \, a^{2} b c d^{2} + 7 \, a^{3} d^{3}\right )} \log \left (x^{2} + x \left (-\frac {a}{b}\right )^{\frac {1}{3}} + \left (-\frac {a}{b}\right )^{\frac {2}{3}}\right )}{18 \, \left (-a b^{2}\right )^{\frac {2}{3}} a b^{2}} - \frac {{\left (2 \, b^{3} c^{3} + 3 \, a b^{2} c^{2} d - 12 \, a^{2} b c d^{2} + 7 \, a^{3} d^{3}\right )} \left (-\frac {a}{b}\right )^{\frac {1}{3}} \log \left ({\left | x - \left (-\frac {a}{b}\right )^{\frac {1}{3}} \right |}\right )}{9 \, a^{2} b^{3}} + \frac {b^{3} c^{3} x - 3 \, a b^{2} c^{2} d x + 3 \, a^{2} b c d^{2} x - a^{3} d^{3} x}{3 \, {\left (b x^{3} + a\right )} a b^{3}} + \frac {b^{6} d^{3} x^{4} + 12 \, b^{6} c d^{2} x - 8 \, a b^{5} d^{3} x}{4 \, b^{8}} \]

input
integrate((d*x^3+c)^3/(b*x^3+a)^2,x, algorithm="giac")
 
output
-1/9*sqrt(3)*(2*b^3*c^3 + 3*a*b^2*c^2*d - 12*a^2*b*c*d^2 + 7*a^3*d^3)*arct 
an(1/3*sqrt(3)*(2*x + (-a/b)^(1/3))/(-a/b)^(1/3))/((-a*b^2)^(2/3)*a*b^2) - 
 1/18*(2*b^3*c^3 + 3*a*b^2*c^2*d - 12*a^2*b*c*d^2 + 7*a^3*d^3)*log(x^2 + x 
*(-a/b)^(1/3) + (-a/b)^(2/3))/((-a*b^2)^(2/3)*a*b^2) - 1/9*(2*b^3*c^3 + 3* 
a*b^2*c^2*d - 12*a^2*b*c*d^2 + 7*a^3*d^3)*(-a/b)^(1/3)*log(abs(x - (-a/b)^ 
(1/3)))/(a^2*b^3) + 1/3*(b^3*c^3*x - 3*a*b^2*c^2*d*x + 3*a^2*b*c*d^2*x - a 
^3*d^3*x)/((b*x^3 + a)*a*b^3) + 1/4*(b^6*d^3*x^4 + 12*b^6*c*d^2*x - 8*a*b^ 
5*d^3*x)/b^8
 
3.1.22.9 Mupad [B] (verification not implemented)

Time = 0.31 (sec) , antiderivative size = 240, normalized size of antiderivative = 1.03 \[ \int \frac {\left (c+d x^3\right )^3}{\left (a+b x^3\right )^2} \, dx=\frac {d^3\,x^4}{4\,b^2}-x\,\left (\frac {2\,a\,d^3}{b^3}-\frac {3\,c\,d^2}{b^2}\right )-\frac {x\,\left (a^3\,d^3-3\,a^2\,b\,c\,d^2+3\,a\,b^2\,c^2\,d-b^3\,c^3\right )}{3\,a\,\left (b^4\,x^3+a\,b^3\right )}+\frac {\ln \left (b^{1/3}\,x+a^{1/3}\right )\,{\left (a\,d-b\,c\right )}^2\,\left (7\,a\,d+2\,b\,c\right )}{9\,a^{5/3}\,b^{10/3}}-\frac {\ln \left (a^{1/3}-2\,b^{1/3}\,x+\sqrt {3}\,a^{1/3}\,1{}\mathrm {i}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,{\left (a\,d-b\,c\right )}^2\,\left (7\,a\,d+2\,b\,c\right )}{9\,a^{5/3}\,b^{10/3}}+\frac {\ln \left (2\,b^{1/3}\,x-a^{1/3}+\sqrt {3}\,a^{1/3}\,1{}\mathrm {i}\right )\,\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,{\left (a\,d-b\,c\right )}^2\,\left (7\,a\,d+2\,b\,c\right )}{9\,a^{5/3}\,b^{10/3}} \]

input
int((c + d*x^3)^3/(a + b*x^3)^2,x)
 
output
(d^3*x^4)/(4*b^2) - x*((2*a*d^3)/b^3 - (3*c*d^2)/b^2) - (x*(a^3*d^3 - b^3* 
c^3 + 3*a*b^2*c^2*d - 3*a^2*b*c*d^2))/(3*a*(a*b^3 + b^4*x^3)) + (log(b^(1/ 
3)*x + a^(1/3))*(a*d - b*c)^2*(7*a*d + 2*b*c))/(9*a^(5/3)*b^(10/3)) - (log 
(3^(1/2)*a^(1/3)*1i - 2*b^(1/3)*x + a^(1/3))*((3^(1/2)*1i)/2 + 1/2)*(a*d - 
 b*c)^2*(7*a*d + 2*b*c))/(9*a^(5/3)*b^(10/3)) + (log(3^(1/2)*a^(1/3)*1i + 
2*b^(1/3)*x - a^(1/3))*((3^(1/2)*1i)/2 - 1/2)*(a*d - b*c)^2*(7*a*d + 2*b*c 
))/(9*a^(5/3)*b^(10/3))